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ABSTRACT: Protein−protein interactions (PPIs) are involved in almost all biological processes in the cell. Understanding
protein−protein interactions holds the key for the understanding of biological functions, diseases and the development of
therapeutics. Recently, artificial intelligence (AI) models have demonstrated great power in PPIs. However, a key issue for all AI-
based PPI models is efficient molecular representations and featurization. Here, we propose Hom-complex-based PPI representation,
and Hom-complex-based machine learning models for the prediction of PPI binding affinity changes upon mutation, for the first
time. In our model, various Hom complexes Hom(G1, G) can be generated for the graph representation G of protein−protein
complex by using different graphs G1, which reveal G1-related inner connections within the graph representation G of protein−
protein complex. Further, for a specific graph G1, a series of nested Hom complexes are generated to give a multiscale
characterization of the PPIs. Its persistent homology and persistent Euler characteristic are used as molecular descriptors and further
combined with the machine learning model, in particular, gradient boosting tree (GBT). We systematically test our model on the
two most-commonly used data sets, that is, SKEMPI and AB-Bind. It has been found that our model outperforms all the existing
models as far as we know, which demonstrates the great potential of our model for the analysis of PPIs. Our model can be used for
the analysis and design of efficient antibodies for SARS-CoV-2.

■ INTRODUCTION
The understanding of protein−protein interaction (PPI)
mechanism is highly important to biomedical applications,
such as cancer genomics, anticancer therapy, and drug
discovery,17,18 because of the essential role of PPI in various
biological processes andmechanisms, including cell metabolism,
signaling, protein transport, and immune system.17,18 Histor-
ically, molecular dynamic (MD) based models11,17,19,25,43 and
statistical learning methods10,29,36,50,58 have been developed for
PPI analysis, in particular, the binding affinity change of PPIs
upon mutations. Recently, data-driven learning models have
gained great momentum. One of the driving force is the ever-
increasing data accumulated in various PPI data sets, including
ASEdb,51 PINT28 SKEMPI,35 SKEMPI 2.0,20 DACUM,15 AB-
Bind,48 and PROXiMATE.22 Based on them, various learning
models have been proposed,17,47 such as mCSM,46 ELASPIC,49

BindProf,2 MutaBind,59 iSEE,16 MuPIPR,61 ProAffiMuSeq,21

GeoPPI,31 etc. These models have demonstrated great promise
in the prediction of binding affinity change of PPIs upon
mutations. Even with the great progress, to design efficient
molecular featurization still remains to be a key issue for learning
models.32,45 More recently, topological data analysis (TDA)13,62

based advanced mathematical tools have been applied
to molecular representation and featurization.3,6,34,37 Learning
models combined with TDA-based features have achieved great
success in various steps of drug design3−8,14,23,41,42,52,53,56,57,60

and D3R Grand challenge.38−40 More interestingly, Top-
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NetTree model has outperformed all existing models for the
prediction of protein−protein binding affinity changes upon
mutations54 and has demonstrated great power in SARS-CoV-2
virus mutation analysis.9

Here, we propose Hom-complex-based machine learning
models for the prediction of PPI binding affinity changes upon
mutations, for the first time. Mathematically, the Hom complex
is one of the key concepts in combinatorial topology.26 It is

Figure 1. Hom-complex-based molecular representations for a benzene ring. The benzene ring is represented as a hexagon graph G with six vertices.
DifferentHom complexesHom(G1,G) can be derived by using different graphG1. We consider five differentG1 graphs, includingK2, L3,K3,C4, andK4.
It can be seen that both Hom(K2, G) and Hom(L3, G) are repetition of the benzene hexagon ring, and Hom(K3, G) and Hom(K4, G) are empty. A
detailed discussion of Hom-complexes can be found in Methods section.

Figure 2.Hom-complex-based filtration for the helix of the protein with PDBID 1C26, denoted asG. (a) To generate the protein-basedHom-complex
Hom(K2, G), an Alpha complex is constructed from the protein atoms (only the helix part). Its one-skeleton graph is then used for the generation of
Hom(K2, G). Further, the Alpha-complex-based filtration process induces a series of one-skeleton graphs, which further generates a filtration process
for Hom-complexes. (b) The persistent Betti curve (from persistent homology) and persistent Euler characteristic curve for the Hom-complex-based
the filtration process of the protein.
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developed by Lovasz in the analysis of graph coloring
problem.1,26,27,33 Hom complex is a generalization of neighbor-
hood complex, which is also introduced by Lovasz to analyze the
Kneser Conjecture and construct some of the first nontrivial
algebra-topological lower bounds for chromatic numbers of
graphs.26,27 In our model, Hom complex is used to characterize
molecular structures and interactions at atomic level. Further, a
multiscale representation of molecules is obtained by the
employment of a filtration process, during which a series of
nested Hom complexes at different scales are systematically
generated. Two topological invariants, that is, persistent
homology and persistent Euler characteristic, are used as
molecular descriptors or fingerprints. Together with a series of
auxiliary features from molecular physical properties, they are
combined with machine learning models for the analysis of PPI
properties. Ourmodel is tested on the twomost-commonly used
data sets, i.e., SKEMPI and AB-Bind data sets, for the prediction
of PPI binding affinity changes upon mutations. The state-of-
the-art results can be achieved by our model.

■ RESULTS
Hom-Complex-Based Molecular Representation and

Featurization. Based on a graph, various graph complexes can
be generated to characterize different topological and
combinatorial properties within the graph.24 Among them is
Hom complex, which is one of the most important tools in
combinatorial topology.1,26,27,33 Mathematically, a Hom com-
plex Hom(G1, G2) can be generated from any two undirected
graphsG1 andG2.Hom complex is a polyhedral complex,1 which
is a collection of cells glued together along with their faces, and
the cells are just all the graph multihomomorphisms from one
graph to the other. Hence, the Hom complex Hom(G1, G2)
naturally characterizes the connections between G1 and G2. A
detailed discussion of Hom complex can be found in the
Methods section.
Figure 1 illustrate some basicHom complexes generated from

a benzene graph, denoted asG. By using five different graphs K2,
L3, K3, C4, K4, five different Hom complexes Hom(K2, G),
Hom(L3,G),Hom(K3,G),Hom(C4,G), andHom(K4,G), can be
derived. Note that bothHom(K3,G) andHom(K4,G) are empty
sets, because in graph G there does not exist any three (or four)
vertices that form fully connected graph K3 (or K4). Obviously,
graph G does not have any higher order fully connected
subgraphs; thus, all the Hom(Kn, G) (n > 2) are empty sets
(Note that Kn are fully connected graph with n vertices). Both
Hom(K2, G) and Hom(L3, G) are disjoint unions of hexagon
graphs. In fact, Hom(K2, G) is homotopy equivalent to the
neighborhood complex of G.26,27 Note that if we treat the
benzene graph G as a bipartite graph by placing the adjacent
vertices in two different sets, its neighborhood complex will have
two disjoint components generated among the atoms within
each set. The homotopy equivalence between Hom(K2, G) and
the neighborhood complex of G indicates that Hom(K2, G)
should also has two disjoint components as we observed. In
general, the graph G1 of Hom(G1, G2) works like a convolution
kernel, as in convolutional neural networks (CNNs), on graph
G2. Different choices of G1 will lead to differentHom complexes
Hom(G1, G2), which characterize different topological and
combinatorial properties within the graph G2.
We use Hom complex to represent molecular structures and

interactions. To balance the computational cost and accurate
molecular topological characterization, we propose an Alpha-
complex-based Hom complex model for molecular representa-

tion. The Alpha complex, which is a very popular method in
computational topology,12 is used to generate molecular graph
models by using its one-skeleton graph. Further, a filtration
process for one-skeleton graphs can be obtained from Alpha
complex-based filtration process, and further induce a filtration
process for Hom complexes. Figure 2a illustrates our Hom
complex-based filtration process for the protein PDBID 1C26
(only its helix region is considered). Note that a multiscale
representation is obtained from the filtration process.
Based on the filtration process, a series of persistent models,

including persistent homology/cohomology, can be considered
and the corresponding topological and geometric invariants can
be used as molecular descriptors or fingerprints.3,30,34,55 It has
been found that these intrinsic invariant based molecular
features can be highly efficient in molecular characterization and
significantly enhance the accuracy for the machine learning
models. Here, we consider two topological invariants, i.e.,
persistent homology and persistent Euler characteristic, for our
Hom complexes. Figure 2b illustrates persistent homology and
persistent Euler characteristic from Hom-complex-based filtra-
tion process for protein PDB 1C26 in Figure 2a.

Hom-Complex-Based Machine Learning Models for
PPIs. The ability to predict PPIs is crucial to the understanding
of a wide range of biological activities and functions. In our
model, Hom(K2, G) complexes (with protein graph G) are used
to represent PPIs and Hom(K2, G) complex-based persistent
homology and persistent Euler characteristic are used as
molecular features for PPIs. Computationally, the results from
persistent homology are represented as persistent barcode or
persistent diagrams. Based on them, many discretization models
are proposed,3 including barcode static, algebraic and tropical
functions, binning approaches, and others. We use the binning
approach, in which the filtration region is divided into equal-
sized bins and the total number of barcode within each bin
(known as persistent Betti number) is a feature vector. Persistent
Euler characteristic can also be discretized into feature vectors in
a similar way. These topological features are combined with
gradient boosting tree model and used in the prediction of PPI
binding energy change upon mutations.

Feature Generation. Protein−protein complexes are usually
of very large sizes, while their interactions mainly happen at
interface regions. In our Hom(K2, G) complex model, only
protein atoms near binding sites are considered to reduce
computational cost at the same time avoid the irrelevant
information. Further, to characterize mutation effects, we have
also taken into consideration of the topological information
directly from the mutation sites and neighborhood regions near
the mutation sites.
More specifically, for a protein−protein complex composed of

two proteins with atom sets denoted as 1 and 2, respectively,
we assume the mutation happens at first protein. We consider
the following four types of atom sets in ourHom-complex-based
PPI models.

• BS
1 : atoms from 1, and it is within 10 Å cutoff-distance

of the binding site (BS)
• BS

2 : atoms from 2, and it is within 10 Å cutoff-distance
of the binding site (BS)

• MS
1 : atoms from the mutation site (MS) of 1

• MN
1 : atoms within 10 Å cutoff-distance from the

mutation site of 1, i.e., mutation site neighborhood
(MN).
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Both protein structures from the wild type and the mutated
type are considered, so there are eight types of atom sets in total.
Further, we consider element-specific representations.3 More
specifically, for each atom set, we consider six element-specific
combinations, including {C}, {N}, {O}, {C,N}, {C,O}, and {N,
O}. As a result, there are totally 48 atom combinations for each
protein−protein complex. For each atom combination, the
corresponding Hom complex is generated and its persistent
homology (β0) and persistent Euler characteristic (χ for vertices
and edges) are computed. The filtration goes from 0 to 5 Å with
step 0.1 Å, so the size of topological feature is 4800 = 48(atom
combination) × 50(persistence) × 2( feature). Besides the
topological features, we also consider 707 auxiliary features,54

so the total feature size is 5507 = 4800 + 707.
Benchmark Data Sets. In our benchmark tests, we consider

two data sets, i.e., AB-Bind data set and SKEMPI data set. The
original AB-Bind data set has 1101 mutational data points with
experimentally determined binding affinities.48 The single-point
mutations from the data set, which include 645 data point across
29 antibody−antigen complexes and among them 20% are
stabilizing mutations and 80% are destabilizing ones, is
considered and is called AB-Bind S645 set.44,54 Note that
there are 27 nonbinders in this data sets (without experimental
binding affinities), and their binding affinity changes are set to be
8 kcal/mol.44,54 The SKEMPI data set contains 3047 binding
free energy changes upon mutation;35 it contains single-point
mutations and multipoints mutations. The 2317 single-point
mutation entries are referred to as the SKEMPI S2317 set. A set
of 1131 protein−protein complexes from SKEMPI S2317,
which have nonredundant interface single-point mutations, are
selected and called SKEMPI S1131 data set.58 Both AB-Bind
S645 data set and SKEMPI S1131 data set are widely used for in
the benchmark of machine learning models for PPIs.44,54 The
SKEMPI 2.0 data set is an updated version of the SKEMPI data
set.20 This data set contains 7085 entries, including single-point
and multipoint mutations. David et al. filtered only single-point
mutations and selected 4169 variants in 319 complexes, denoted
by S4169.46 S4169 is also considered in our benchmark data sets.

Performance. In our Hom-complex-based machine learning
model, we use gradient boosting tree (GBT) with parameters as
follows, “n_estimators = 40000”, “max_depth = 6”, “learnin-
g_rate = 0.001”, “loss = ls”, and “subsample = 0.7”. We construct
two types of models, one only using topological features and the
other using both topological and auxiliary features, denoted by
Hom-ML-V1 and Hom-ML-V2, respectively. Pearson correla-
tion coefficient (PCC) and root-mean-square error (RMSE) are
used to assess the quality of prediction. Ten independent
regressions are performed and the median PCC and RMSE are
used as the measurement of the performance of our model.

Performance on SKEMPI 2.0 Data Set.We tested our models
on S4169 data set by 10-fold cross-validation. Our model
outperforms all existing models on this data set. More
specifically, our Hom-ML-V2 model achieved a PCC of 0.80
and RMSE of 1.06 kcal/mol. TopNetTree model has a PCC of
0.79 and RMSE of 1.13 kcal/mol. mCSM-PPI2 model has a
PCC of 0.76 and RMSE of 1.19 kcal/mol. Our Hom-ML-V1
model only using Hom-complex-based features also can
achieved a PCC of 0.77 and RMSE of 1.12 kcal/mol, which
demonstrates the great power of our Hom-complex-based
molecular representation and featurization.

Performance on SKEMPI-1131 Data Set. Table 1 shows the
PCCs for all the machine learning models, as far as we know, on
data set SKEMPI S1131 data set using 10-fold cross-validation.

It can be seen that our model has achieved the best results with
PCC of 0.857 and RMSE of 1.279 kcal/mol. Detailed
information on our prediction results can be found in Figure
3. Further, the comparison of average and variance between
predicted binding affinity changes and the experimental ones are
demonstrated as in Figure 4. The residue to residue matrix
representation is used with x-axis for the wild residue types and
y-axis for the mutated residue types. The ΔΔG for a reverse
mutation, i.e., from mutated types to wide types, is set to be the
opposite values. In this way, the residue to residue matrix is the
antisymmetric matrix. A highly consistent pattern between the
experimental-based matrix and prediction-based matrix can be
observed for both average binding affinity changes (a) and the
variance (b), which indicates that our predictions are highly
accurate.

Performance on AB-Bind S645 Data Set. Table 2 lists the
results for AB-Bind S645 data set. It can be seen that our model
ranked second among all the existing models, as far as we know.
There are 27 nonbinders that do not follow the general
distribution of the other data in the data set. It has been reported
that these nonbinders have a strong negative impact on the
prediction model accuracy.54 Our model can rank as first if we
exclude these 27 nonbinders from the data set. More specifically,
the PCC increases from 0.58 to 0.70 by excluding these 27
nonbinders. Detailed information on our results can be found in
Figure 5.

■ DISCUSSION
Efficient molecular representations and featurization are of great
importance for machine learning models in material, chemical,
and biological data analysis. Recently, many mathematical
invariants from algebraic topology and differential geometry
have been proposed, including persistent homology, persistent
spectral, persistent curvatures, and other persistent functions.
These persistent functions provide a series of highly effective
molecular descriptors that not only preserve the intrinsic
structure information but also maintain molecular multiscale
properties. Molecular descriptors from these mathematical
invariants can have a much better performance in machine
learning models.
In our Hom-complex-based models, Hom complexes are used

in protein−protein interaction representation. For PPI based
graph G, various Hom complexes Hom(G′, G) can be
constructed to characterize different inner connection informa-
tion with graph G, by changing graph G′. Further, a series of
nested Hom complexes are generated from a specially designed
filtration process, and naturally introduce a multiscale
representation of the PPIs. Molecular descriptors and finger-

Table 1. Comparison of the Performance betweenOurModel
and Other Models on SKEMPI S1131 Data Set

method PCC

Hom-ML-V2 0.857
TopNetTree 0.850
Hom-ML-V1 0.792
BindProfX 0.738
Profile-score+FoldX 0.738
Profile-score 0.675
SAAMBE 0.624
FoldX 0.457
BeAtMuSic 0.272
Dcomplex 0.056
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prints can be obtained from Hom-complex-based molecular
representations by using various persistent functions, in
particular, persistent Betti curve and persistent Euler character-
istics. Our Hom-complex-based learning model has achieved
great accuracy in the prediction of binding affinity changes upon
mutations. To the best of our knowledge, this is the first time
that Hom complex is used for molecular representation and
featurization, and combined with machine learning for PPI
analysis.

■ METHODS
Mathematical Background for Hom Complex. Hom

complex Hom(G1, G2) is a polyhedral complex defined on any
two undirected graphs G1 and G2. It is developed to give lower
bounds in graph coloring problem.33 In general, a vertex
coloring of a graph G of n vertices can be seen as a graph
homomorphism from G to the complete graph Kn. Actually, all
the graph homomorphisms from G1 to G2 are just the 0-cells of
Hom(G1, G2), and the graph multihomomorphisms from G1 to
G2 form the higher dimensional cells of Hom(G1, G2).
For any graph G, we denote the vertex set of G as V(G), and

the edge set of G by E(G), E(G) ⊂ V(G) × V(G).
Definition 0.1 (Graph Homomorphism). For two graphs G1

andG2, a graph homomorphism fromG1 toG2 is a mapϕ:V(G1)
→ V(G2) such that if x1, x2 ∈ G1 are connected by an edge in
E(G1), then ϕ(x1) and ϕ(x2) are also connected by an edge in
E(G2).

Definition 0.2 (Graph Multihomomorphism). For two
graphs G1 and G2, a graph multihomomorphism from G1 to

G2 is a map \{ }V G: ( ) 2V G
1

( )2 , such that if x1, x2 ∈ V(G1)
form an edge in G1, then η(x1) × η(x2) ⊆ E(G2).
Note that if G1 has n vertices x1, x2, ..., xn, then a graph

multihomomorphism η from G1 to G2 can be written as a tuple
(z1, z2, ..., zn) where η(xi) = zi ⊂ V(G2)(i = 1, ..., n).

Definition 0.3 (Hom Complex). For two graphs G1 and G2,
the Hom complex Hom(G1, G2) is the polyhedral complex with
all the graph multihomomorphisms as cells.
We consider two examples for the illustration of Hom

complex.
Example 1. Hom(K2, K3)

The cells are as follows:
• 0-cells: (a, b), (a, c), (b, c), (b, a), (c, a), (c, b)
• 1-cells: (a, {b, c}), (b, {a, c}), (c, {a, b}), ({b, c}, a), ({a, c},

b), ({a, b}, c)
In Hom complex Hom(K2, K3), a graph multihomomorphism

ηmaps the vertices in K2, i.e., x1 and x2, into vertices in K3, i.e., a,
b, and c. It is represented as a tuple (η(x1), η(x2)), as K2 has only
two vertices. Here both η(x1) and η(x2) are one or more than

Figure 3. Performance of our model on SKEMPI S1131. (a) The comparison between the experimental binding affinity changes (kcal/mol) and
predicted binding affinity changes (kcal/mol). (b) The comparison between our model and other existing models. (c) Distributions of experimental
binding affinity changes grouped by charges, polar, hydrophobic, special cases, alanine, and nonalnine. (d) Prediction results in terms of PCC (and
RMSE) in different groups. They are 0.908 (1.192), 0.873 (1.107), 0.795 (1.217), 0.866 (1.401), 0.672 (1.158), and 0.884 (1.334) for charged, polar,
hydrophobic, special, alanine, and nonalanine, respectively.
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one vertices from K2, and any vertex from η(x1) will form an
edge with the vertex in η(x2) in K3. For instance, tuple (a, {b, c})
is a graph multihomomorphism that lets η(x1) = a and η(x2) =
{b, c}, so it is an 1-cell in Hom(K2, K3). We list in Example 1 all
the possible graph multihomomorphisms, which are 0-cells and
1-cells of Hom(K2, K3). Note that there are no cells with
dimension larger than 2. It can be seen thatHom(K2,K3) is just a
hexagon with 6 vertices and 6 edges.

Example 2. Hom(L3, K3)

Figure 4. Comparison of the average and variance between the experimental binding affinity changes (kcal/mol) and predicted binding affinity
changes (kcal/mol) for data set SKEMPI S1131. The residue to residue mutations are illustrated in a matrix. The x-axis represents wild residue types
while y-axis is for the mutated residue types. TheΔΔG for a reverse mutation is set to be its opposite value. (a) Average binding affinity changes upon
mutation (kcal/mol). (b) Variance of the binding affinity changes upon mutations (kcal/mol).

Table 2. Comparison of the Performance betweenOurModel
and Other Models on AB-Bind S645

PCC

method with nonbinders without nonbinders

TopNetTree 0.65 0.68
Hom-ML-V2 0.58 0.70
Hom-ML-V1 0.58 0.68
mCSM-AB 0.53 0.56
Discovery Studio 0.45
mCSM-PPI 0.35
FoldX 0.34
STATIUM 0.32
DFIRE 0.31
bAsA 0.22
dDFIRE 0.19
Rosetta 0.16
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The cells are as follows:

• 0-cells: (a, b, a), (a, b, c), (a, c, a), (a, c, b), (b, a, b), (b, a,
c), (b, c, a), (b, c, b), (c, a, b), (c, a, c), (c, b, a), (c, b, c)

• 1-cells: ({a, b}, c, a), ({a, b}, c, b), ({a, c}, b, a), ({a, c}, b,
c), ({b, c}, a, b), ({b, c}, a, c), (c, {a, b}, c), (b, {a, c}, b), (a,
{b, c}, a), (a, c, {a, b}), (b, c, {a, b}), (a, b, {a, c}), (c, b, {a,
c}), (b, a, {b, c}), (c, a, {b, c})

• 2-cells: ({a, b}, c, {a, b}), ({a, c}, b, {a, c}), ({b, c}, a, {b,
c})

In Hom(L3, K3), each graph multihomomorphism η can be
represented as a tuple (η(x1), η(x2), η(x3)). We require that
edges to be formed between η(x1) and η(x2) and also between
η(x1) and η(x2), in graph K3. Note that there are three 2-cells
and each of them consists of four vertices. For instance, the 2-cell
({b, c}, a, {b, c}) is composed of four 1-cells, including (b, a, b),
(b, a, c), (c, a, b), and (c, a, c). We list in Example 2 all the
possible graphmultihomomorphisms, i.e., cells forHom(L3,K3).
Only 0-cells are marked in the figure and the four 2-cells are
marked as parallelograms.
In general, for Hom complex Hom(G1, G2), the graph G1 can

be viewed as a “probing” graph that is used to reveal G1-related
intrinsic patterns within G2. Different types of G1 graphs can be
employed to characterize different inner connection information

on graph G2. Mathematically, Hom(K2, G1) is homotopy
equivalent to the neighborhood complex N(G) of G.26,27

Hom-Complex-Based Molecular Representation and
Featurization. Efficient molecular representations and featu-
rization are of essential importance for machine learning models
in molecular data analysis. In our model, to balance the
computational cost and accuracy of molecular characterization,
we propose Alpha-complex-basedHom complex representation.
The essential idea is to use the one-skeleton graphs from Alpha
complexes to generateHom complexes, at the same time use the
Alpha-complex-based filtration to induce a filtration process for
Hom complexes.
Based on molecular structures, is a series of nested Alpha

complexes can be generated

f f fAlpha( ) Alpha( ) ... Alpha( )n1 2

where f1 < f 2 < ... < f n are the filtration values. For each Alpha( f k)
(k = 1, ..., n), its one-skeleton graph, denoted asG fk

, is extracted.
Consequently, a sequence of graphs are generated, and this
sequence of graphs naturally form a filtration process,

G G G...f f fn1 2

Figure 5. Performance of our model on AB-Bind S645 data set. (a) The comparison between the experimental binding affinity changes (kcal/mol) and
predicted binding affinity changes (kcal/mol) with nonbinders. (b) The comparison between the experimental binding affinity changes and predicted
binding affinity changes without nonbinders. (c) Distributions of experimental binding affinity changes grouped according to residue region types. (d)
Prediction results for different groups, with PCC (RMSE) 0.506 (1.705), 0.393 (1.685), 0.528 (2.019), 0.725 (1.341), and 0.719 (0.583) for core, rim,
support, interior, and surface, respectively.
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Each graph =G k n( 1, ..., )fk
can be used to generate Hom

complexesHom G G( , )f1 k
withG1 be any “probing” graph. And a

sequence of Hom complexes is obtained, and this sequence of
Hom complexes also form a filtration process,

Hom G G Hom G G Hom G G( , ) ( , ) ... ( , )f f f1 1 1 n1 2

Computationally, we only considerHom complexesHom(K2,G)
in this paper. An example for the protein PDBID 1C26 can be
found in Figure 2.
From the filtration process of the Hom-complexes, a series of

persistent functions, in particular persistent homology and
persistent Euler characteristics, can be computed and further
used as molecular descriptors or fingerprints. The essential idea
is to extract mathematical invariants from differential geometry,
algebraic topology, combinatorics, and others, from the filtration
process. These invariant-based descriptors are more intrinsic
and fundamental and have better transferability for machine
learning models.7
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